[image: image1.emf]

	

	

Internal assessment resource Digital Technologies 2.46 v2 for Achievement Standard 91373

PAGE FOR TEACHER USE

[image: image2.emf]

	

	

Internal Assessment Resource

Digital Technologies Level 2
	This resource supports assessment against:

Achievement Standard 91373 version 3
Construct an advanced computer program for a specified task

	Resource title: Dream Pizza Phone Ordering Program

	3 credits

	· This resource:

· Clarifies the requirements of the standard

· Supports good assessment practice

· Should be subjected to the school’s usual assessment quality assurance process

· Should be modified to make the context relevant to students in their school environment and ensure that submitted evidence is authentic

	Date version published by Ministry of Education
	February 2015 Version 2

To support internal assessment from 2015

	Quality assurance status
	These materials have been quality assured by NZQA.

NZQA Approved number: A-A-02-2015-91373-02-5704

	Authenticity of evidence
	Teachers must manage authenticity for any assessment from a public source, because students may have access to the assessment schedule or student exemplar material.

Using this assessment resource without modification may mean that students’ work is not authentic. The teacher may need to change figures, measurements or data sources or set a different context or topic to be investigated or a different text to read or perform.

Internal Assessment Resource

Achievement Standard Digital Technologies 91373: Construct an advanced computer program for a specified task

Resource reference: Digital Technologies 2.46 v2
Resource title: Dream Pizza Phone Ordering Program
Credits: 3
Teacher guidelines

The following guidelines are designed to ensure that teachers can carry out valid and consistent assessment using this internal assessment resource.

Teachers need to be very familiar with the outcome being assessed by Achievement Standard Digital Technologies 91373. The achievement criteria and the explanatory notes contain information, definitions, and requirements that are crucial when interpreting the standard and assessing students against it.

Context/setting

This activity requires the student to construct a program that will perform certain specified functions for a pizza delivery business.

Several approaches are possible when using this standard for assessment.

Student planning is assessed:

· The plan is developed by the student and approved by the teacher in conjunction with assessment resource 91372.

· The students have been engaged in technological practice and are at the point where they have fully established the specifications or plan for a computer program and are ready to create it. These specifications or plan can be assessed against 91354 or 91357 technology achievement standards.

Student planning is not assessed:

· The plan is developed by the teacher and class together.

· The plan is developed by the teacher and given to the class. An example abstract plan can be found in the resource that accompanies this assessment activity.

In all cases ensure that the plan specifies:

· variables, their scopes and data types

· indexed data structure

· a modular structure for the program, including details of the procedural structures of the modules

· a set of input cases for testing the program.

NOTE: It is expected that the plan will evolve as programming takes place however the plan is not assessed as part of this activity.

Prior learning

Before being given this task, ensure that your students have had ample opportunity to practise using the programming language that they will use for this purpose.

They need to have practised writing a program, (working with an abstract plan), and testing and debugging to ensure that the program is correct on all inputs – expected, boundary, and exceptional.

They need to know how to:

· select appropriate data types for variables (e.g. using an integer instead of a double if those values are not required);

· accurately declare appropriately scoped variables (i.e. variables should be defined as global, within a module or within a block as required);

· select an appropriate indexed data structure and access data within that structure;

· use derived values instead of hard coded values (e.g. accessing the length of the array instead of hard coding its value, such as 10);

· set code out clearly, with comments that explain how the program works (e.g. pre- and post-condition comments for modules);

· structure a program with self-contained modules so as to avoid significant redundancy.

Conditions

The teacher will specify the language in which the students construct the program. This will normally be a text-based language. Other types (for example, drag-and-drop) could be used as long as they appropriately support functions/methods/procedures and arrays or lists.

This is an individual assessment activity. It is recommended that students be given 6 weeks of in-class time to complete it. (This timeframe includes teaching learning and assessment.)
Resource requirements

A programming development environment for a programming language with an appropriate text editor, compiler or interpreter, or integrated development environment (IDE).

A different task might require additional specialised resources, such as sound-recording equipment, image-manipulation software, robots or other electronics.

Additional information

This standard requires you to make judgements about the ways in which the student has constructed their program, as well as about the quality of the finished program. For example, you are required to judge (for merit) whether the student has shown “independence and accuracy” in the construction of their program. Independence relates to the student’s manner of working. Specifically, do they get on and make their program with minimal advice and guidance from their teacher and without relying on help from fellow students? Some evidence will come from classroom observation and from conferencing with the student. You must be able to justify such judgements with evidence e.g. notes that you have made. Accuracy can be measured within the program (e.g. the student has chosen the correct data types/scope for their variables) and in the way the student has tested and debugged their program. etc.

The criterion for excellence relates to the efficiency of the advanced computer program. All of the evidence for efficiency can be found within the program e.g. reusing modules to reduce redundancy, variables and constants that are used effectively, comprehensive planning of program and testing procedures.

Independence

Ensure that all students know what “construct with independence” means in practice.

Achieved — construct (with some guidance)

“with some guidance” means the teacher (or peers) may:

· respond to student-initiated requests for assistance, for example, where to find suitable resources, what tool to use.

· sometimes prompt the student to, for example, consider other options, think about the wisdom of a choice, re-read the brief.
The teacher (or peers) may NOT, however:

· make any decisions for students

· assist a student in any hands-on way (do any part of the project for them)

· respond to frequent questions or requests for step-by-step guidance.

Merit — construct “with independence and accuracy”

“With independence” means the student:

· owns the programming (takes responsibility for achieving a quality program)

· is well organised, self starting, self managing

· does their own decision-making

· books any equipment/machines they need in timely fashion

· brings required materials/resources in timely fashion

· manages their files carefully so that they are easily retrieved at the start of the next period

· carries out appropriate checking and testing and takes corrective action as necessary

· recognises and deals with issues promptly instead of allowing them to blow the timeline

· is always able to describe what they are doing, why, and where their programming is up to.

It does NOT mean that the student:

· is unable to ask for help with technical or software issues (for example, faulty equipment)

· is responsible for supplying resources that the school should be providing

Excellence — construct “with independence and accuracy”

There is no step-up on “independence and accuracy” for excellence—see Merit.

Internal Assessment Resource

Achievement Standard Digital Technologies 91373: Construct an advanced computer program for a specified task

Resource reference: Digital Technologies 2.46 v2
Resource title: Dream Pizza Phone Ordering Program
Credits: 3

	Achievement
	Achievement with Merit
	Achievement with

Excellence

	Construct an advanced computer program for a specified task.
	Skilfully construct an advanced computer program for a specified task.
	Efficiently construct an advanced computer program for a specified task.

Student instructions

Introduction

This assessment activity requires you to construct a computer program that will perform certain specified functions for a pizza delivery business. Your teacher will specify the programming language.

You will be assessed on how skilfully you construct the program and the efficiency of the program.

If you have not already created a suitable plan for Achievement Standard 91372, use the supplied plan as the basis for your program.

This is an individual assessment activity. You will have 6 weeks of in-class time and out-of-class time to complete it.

Teacher note: Adapt the time allowed and the format of the assessment to meet the needs of your students.

Task

Dream Pizzas want to computerise their phone orders. Specifically, they want to be able to enter customer details, pizza(s) ordered and pick-up or delivery requirements into a computer and have it display the delivery details, itemised order, and total cost. Phone orders generally consist of several kinds of pizza.

Your program must meet the following specifications:

· The program contains options for the phone operator to specify whether the pizza order is for pickup or delivery.

· If the order is for delivery:

· the program should collect the customer’s name, address and phone number

· a $3 delivery charge should be added to the total cost

· If the order is for pick up:

· The phone operator should be asked to enter the customer’s name into the program.

· The program should allow the phone operator to input how many pizzas the customer would like (maximum 5).

· A numbered menu of at least 12 pizza names should be presented to the phone operator. This menu should be stored in an indexed data structure (e.g. an array or list) and may be hard-coded within the program so that pizza names don’t need to be typed in every time the program is run.

· Each pizza to be ordered should be selected from the choices available on the menu and the order information should be stored.

· The cost of the first seven (regular) pizzas on the menu is $8.50 and the rest are $5 more as they are gourmet pizzas.

· When the order is finished:

· the names of ordered pizzas and their individual price should be displayed

· the total cost of the order including any delivery charge should be displayed

· customer name should be displayed

· if the pizza is for delivery the address and phone number should be displayed.

· The program should allow the operator to cancel the order.

· After the order information has been displayed the program should be ready to accept another order or exit.

Note: There does not need to be any facility for editing the ordered list of pizzas. If the order is not right, the operator would just cancel it and start again from the beginning.

Ensure that in your finished program:
· there is at least one indexed data structure and is decomposed into user-defined modules with scoped variables, constants and derived values effectively to increase the flexibility and robustness of the program.

· interaction between modules is minimised, modules are reused rather than duplicated, and the procedural structure of each module is efficient.

Annotate your code and use explanatory variable/module names so that the purpose of each part of the program is clear. This includes documenting the program with comments on the function and behaviour of the modules. Use your comments to justify the decisions you made during the programming process.

Comprehensively test and debug the program in an organised and time effective way so it works correctly on all inputs – expected, boundary, and invalid.

Hand in:

· a printout of your final source code

· an electronic version of your program

· screen shots of example output with annotations

· short documentation describing how you implemented your testing procedures and the outcomes of your testing e.g. a testing log.

Resource

Note: See EN 5 & 6 for more details.

Abstract program plan

Variables (type and scope should be determined by the student)
Some example variables required could be:

· name, address and phone number

· total cost

· delivery charge

· pizza prices

· menu choice

· number of pizzas.
Indexed data structure

An indexed data structure could be:

· menu array/list (array/list of different types of pizzas)

· order array/list (array/list to hold the pizza order).
Main program structure (modules and specific procedural details of the modules should be determined by the student)
· Ask if the order is for pickup or delivery

· Get the customer’s details

· Ask for how many pizzas the customer requires

· Get the customer order

· Calculate the cost

· Confirm the order otherwise clear the order

· Display the order

· Clear the order ready for the next order.
Example input test cases

John Smith, 56 Rockwell Avenue, Dunedin - 3 Hawaiian and 2 Double Cheese Pizzas for pickup

Kelly Ross, 45 Centennial Avenue, Dunedin - 2 Vegetarian Pizzas for delivery

Julie Webb, 1 Elgin Road, Dunedin - 2 Meat lovers and 5 Double Cheese Pizzas for delivery

Assessment schedule: Digital Technologies 91373 Dream Pizza Phone Ordering Program
	Evidence/Judgements for Achievement
	Evidence/Judgements for Achievement with Merit
	Evidence/Judgments for Achievement with Excellence

	The student has constructed an advanced computer program for the specified task.
With some teacher guidance the student has:

· implemented a plan for an advanced program in a suitable programming language

· met all the specifications outlined in the task for the Dream Pizza Company

· written a program that has:

· included variables, initialisation, assignment, expressions, selection and iteration control structures

· accessed the contents of an indexed data structure

· included multiple modules and calls to these modules.

· obtained and used input from a user, files, or other external sources

· set out the program code clearly and documenting the program with comments
The student has written well formatted and readable code e.g. using indents and appropriate spacing. The student has written simple code comments e.g. This module is the customer order method.

· tested and debugged the program to ensure it works on a sample of expected input cases.
The student has tested and debugged the program to ensure that it functions correctly and as intended on a sample of expected inputs to meet specifications.

The program produces correct output for the individual price and total price of a pizza order, including delivery price when delivery option is selected.

The testing does NOT extend to cover boundary, invalid and exceptional cases e.g. 0, four, -6, 3.7 or 45 pizzas ordered.

	The student has skilfully constructed an advanced computer program for the specified task.
The student has:

· independently implemented a plan for an advanced program in a suitable programming language that uses well-chosen scopes for variables, and well-chosen parameters for modules

· met all the specifications outlined in the task for the Dream Pizza Company. The student has independently constructed their advanced computer program. A main module has been planned with calls to other modules that have a procedural structure for a sub task. The modules could include parameters where needed.

· written a program that has:

· included variables which are of the correct scope for how the variable is used with in the program (e.g. delivery boolean is global, counter for loop is local to a module), initialisation, assignment, expressions, selection and iteration control structures

· accessed the contents of an indexed data structure

· included multiple modules with parameters where necessary e.g. Display the order (string client_name, string client_address) etc.

· obtained and used input from a user, files, or other external sources

The student has independently chosen programming language constructs and documented the program with comments on the modules.

The student has accurately constructed their variables within the relevant modules.
For example:

· name, local with customer details, string

· total_cost, local within calculate cost, double

The student has accurately constructed the parameters that will be passed into their modules. For example
The module to calculate price will receive an integer that indicates the position of the pizza in the menu array which will be passed from the show_pizzas module.

· documented the program with variable and module names and comments that accurately describe code function and behaviour

The student has written well formatted and readable code e.g. using indents and appropriate spacing.

The code comments are descriptive e.g.
This module calculates and returns the price of this pizza depending on its position in the menu array.
The student has used explanatory variable names such as customerName and deliveryCharge.

· tested and debugged the program in an organised way to ensure it works on inputs that include both expected and boundary cases.
The student would typically have tested each module incrementally and created a testing plan which included expected, boundary and invalid test cases. They have documented the development of their program using a testing log.

The program produces correct output for the individual price and total price of a pizza order, including delivery price when delivery option is selected.

Output is correctly identified, formatted and labelled e.g. prices have 2 decimal places and a $ sign.

The program reacts correctly to the number of pizzas ordered. No extra data is collected.

The testing and debugging ensured the program works on boundary cases e.g. the program has been tested on order sizes of 0, 1, 5 and 6.

	The student has efficiently constructed an advanced computer program for the specified task.
The student has:

· constructed an advanced program where the modules (including their procedural structures) constitute a well-structured logical decomposition of the task

· met all the specifications outlined in the task for the Dream Pizza Company

· written a program that has:

· included variables which are of the correct scope for how the variable is used with in the program (e.g. delivery boolean is global, counter for loop is local to a module), initialisation, assignment, expressions, selection and iteration control structures

· accessed the contents of an indexed data structure

· included multiple modules with parameters where necessary e.g. Display the order (string client_name, string client_address) etc.

· obtained and used input from a user, files, or other external sources.
The student has independently chosen programming language constructs and documented the program with comments on the modules.

The student has constructed each module to have a clear and well defined purpose within the context of the task. Interaction between modules will be minimised, modules will be reused rather than duplicated, and the procedural structure of each module will be efficient e.g. to prevent code duplication a clear the order module is called by the main module to cancel an order as well as start a new order. Other examples include order display, calculate cost etc.

Students could have used an additional indexed data structure to hold their pizza order information (as well as pizza menu).
· used variables, constants, and derived values effectively so as to increase the flexibility and robustness of the program

Constants should be used as required when a value never changes e.g. delivery charge, max order size.

Derived values are returned properties or are calculated from other values e.g. students have determined the size for the pizza order indexed data structure based on the user input for number of pizzas ordered.

Students could have replaced hard coded values with derived values e.g. using the array length of the pizza order array rather than a hard coded value (5).

Students have used variables of appropriate scope (e.g. the variable to hold the total value of the pizza order should be declared in that module and not as for example a global).

· set out the program code concisely and documenting the program with comments that explain and justify decisions

The student has written well formatted and readable code e.g. using indents and appropriate spacing. The code comments describe the logical decomposition of the task (e.g. an appropriate comment for a module which gets the user’s order “Module to process the user’s order. Called repeatedly by the loop which handles a sequence of user orders”. A loop is used because the users order is a repetitive sequence.)

Further examples of explaining and justifying decisions could include:

 Used array.length to control the loop as it allows the program to be more flexible and efficiently update.

Displaying the order is its own module as it is called repeatedely from within the name module otherwise this code would be duplicated several times in the main module.

The student has used explanatory variable names such as customerName and deliveryCharge.

· comprehensively tested and debugged the program in an organised and time effective way to ensure the program is correct on expected, boundary and invalid inputs.

The student would typically have tested each module incrementally and created a testing plan which included expected, boundary and invalid test cases. They have documented the development of their program using a testing log.

The program produces correct output for the individual price and total price of a pizza order, including delivery price when delivery option is selected.

Output is correctly identified, formatted and labelled e.g. prices have 2 decimal places and a $ sign.

The program reacts correctly to the number of pizzas ordered. No extra data is collected.

The testing and debugging ensured the program works on boundary cases e.g. the program has been tested on order sizes of 0, 1, 5 and 6.

The testing and debugging ensured the program works on invalid inputs (e.g. the user enters a word where a number is expected).

Final grades will be decided using professional judgement based on a holistic examination of the evidence provided against the criteria in the Achievement Standard
� EMBED Word.Picture.8 ���

This resource is copyright © Crown 2015
Page 8 of 12

_1221637059.doc
[image: image1.png]National Certificate of Educational Achievement
TAUMATA MATAURANGA A-MOTU KUA TAEA

