[image: image1.wmf]

	

	

Internal assessment resource Digital Technologies 1.48 v3 for Achievement Standard 91078
PAGE FOR TEACHER USE

[image: image2.png]30kQ resistor
VVoltage L

divider

Internal Assessment Resource

Digital Technologies Level 1

	This resource supports assessment against:

Achievement Standard 91078 version 3
Implement basic interfacing procedures in a specified electronic environment

	Resource title: Car Park Barrier Arm

	3 credits

	This resource:

· Clarifies the requirements of the standard

· Supports good assessment practice

· Should be subjected to the school’s usual assessment quality assurance process

· Should be modified to make the context relevant to students in their school environment and ensure that submitted evidence is authentic

	Date version published by Ministry of Education
	February 2015 Version 3

To support internal assessment from 2015

	Quality assurance status
	These materials have been quality assured by NZQA.

NZQA Approved number A-A-02-2015-91078-02-4638

	Authenticity of evidence
	Teachers must manage authenticity for any assessment from a public source, because students may have access to the assessment schedule or student exemplar material.

Using this assessment resource without modification may mean that students’ work is not authentic. The teacher may need to change figures, measurements or data sources or set a different context or topic to be investigated or a different text to read or perform.

Internal Assessment Resource

Achievement Standard Digital Technologies 91078: Implement basic interfacing procedures in a specified electronic environment

Resource reference: Digital Technologies 1.48 v3
Resource title: Car Park Barrier Arm
Credits: 3
Teacher guidelines

The following guidelines are supplied to enable teachers to carry out valid and consistent assessment using this internal assessment resource.

Teachers need to be very familiar with the outcome being assessed by Achievement Standard Technology 91078. The achievement criteria and the explanatory notes contain information, definitions, and requirements that are crucial when interpreting the standard and assessing students against it.

Context/setting

In this assessment activity, students will make a working model of a barrier arm for a car entering a car park, using basic electronics components and a microcontroller. The barrier arm must perform to the specifications outlined in the task.

This context can be easily adapted for other electronic environments where there is a combination of hardware and embedded software that performs to specifications, for example, a temperature-controlled greenhouse or a farm gate.

The specifications must be of sufficient rigour to allow the student to meet the standard. The specifications need to be agreed prior to the implementation of interfacing procedures. They may be teacher-given or developed in negotiation with the student.
When developing specifications, it is essential that:

· the specifications relate to the monitoring and control of variables in both hardware and software

· the electronic environment includes a functional combination of hardware and embedded software

· the specifications define the functional qualities required.

Students are required to collect portfolio evidence as they complete the task. This could include annotated photographs, diagrams, short video clips, or code. Provide students with guidance around what the evidence should look like.

Conditions

Students will be assessed on their ability to:

· choose appropriate component types and values for the barrier arm

· test and debug a functional model of the barrier arm

· use data sheets or calculations to assist in choosing appropriate component types and values for the barrier arm

· write well-structured, clearly annotated, and readily understandable software.

This is an individual assessment task. Adapt the time allowed in the student instructions to meet the needs of your students.

Resource requirements

Provide students with:

· access to a computer

· a microcontroller system that includes a simple switch and a light sensor that can detect the position of the arm, and is able to control the electric motor that powers the arm

· a construction set that easily allows a gearing system to be included to manage the speed of the arm – the simplest method is to use a construction set that includes all of the above components ready to plug and play

· access to a camera and/or video camera to photograph portfolio evidence.

Adapt the list of resources to meet the needs of your students. Some students may have cameras on their mobile phones, which can be used to document the process.

Additional information

In the barrier arm example, two variables that are monitored are the sensors that detect when the arm is in the horizontal and vertical positions. The variable that is controlled is the position of the arm. Using a motor controls this. The sensors and the motor are the pieces of hardware that are used to monitor and control these variables. In the software (see Appendices 2, 3, and 4), there is a variable called “switch_value” and another one called “sensor_value”. These are the variables used in the software to monitor the states of the input variables. In the Excellence code, there is a variable called “arm_up”, which is used to control the motor.

The table below exemplifies the standard requirements in different contexts.

	Example
	Input variable
	Output variable
	Interface hardware

	Car park barrier arm
	· Arm vertical position

· Arm horizontal position
	· Motor
	· Motor control circuit

· Motor

· LDR plus appropriate resistor

· LED plus appropriate resistor

	Greenhouse temperature
	· Temperature

· Moisture
	· Motor (for controlling windows)
	· Thermistor or other temperature sensor

· Motor control circuit

· Humidity or moisture sensor

· Motor (for windows)

	Farm gate
	· Vehicle proximity

· Gate position
	· Gate opener/closer
	· IR beam sensor

· IR TV remote

· Limit switches for gate positions

· Gate motor

Basic interfacing procedures (as outlined in explanatory note 4) involve selecting, testing, and debugging of the hardware and software that allow different devices to work together to meet the given specifications.

Internal Assessment Resource

Achievement Standard Digital Technologies 91078: Implement basic interfacing procedures in a specified electronic environment
Resource reference: Digital Technologies 1.48 v3
Resource title: Car Park Barrier Arm
Credits: 3
	Achievement
	Achievement with Merit
	Achievement with Excellence

	Implement basic interfacing procedures in a specified electronic environment.
	Skilfully implement basic interfacing procedures in a specified electronic environment.
	Efficiently implement basic interfacing procedures in a specified electronic environment.

Student instructions
Introduction

This activity requires you to make a car park barrier arm using basic electronic components and a microcontroller. The barrier arm must perform to the specifications outlined in the task.
You will be assessed on your ability to:

· choose appropriate component types and values for the barrier arm

· test and debug a functional model of the barrier arm

· use data sheets or calculations to assist in choosing appropriate component types and values for the barrier arm

· write well-structured, clearly annotated, and readily understandable software.

As you complete the assessment task, gather evidence to include in a portfolio. This will be handed in with your completed barrier arm.

This is an individual assessment task. You have 4–6 weeks to complete it.

Teacher note: Adapt the time allowed to meet the needs of your students.

Task
Select appropriate electronics components for an interface that links the barrier arm to the microcontroller. Show how you have used data sheets or calculations to assist in selecting these components. You may use circuit diagrams to assist in showing this.

Write a computer program that controls the barrier arm and allows it to work according to the specifications provided. The software interface needs to be well structured, readily understandable, and clearly annotated. This means your computer program should:

· be clearly set out and correctly indented

· include comments that explain exactly what the program is doing at each step

· use labels so that it is easy to read and understand the program.

Teacher note: Refer to the examples in the assessment schedule.

Test and debug a working model of the barrier arm system. This means checking that the barrier arm works according to the specifications and taking actions to correct it where it is not performing as expected.

Hand in your completed barrier arm and portfolio of evidence to your teacher.

As you complete this task, collect brief evidence of the steps you take to create your barrier arm. Evidence could include annotated photographs, diagrams, short video clips, and code for your computer program. This evidence will be handed in for assessment with your completed car park barrier arm.

The completed car park barrier arm must also meet the following specifications:

· A single 9V LEGO motor will power the barrier arm.

· Electronic light sensors will be used to detect the position of the barrier arm – in both horizontal and vertical positions. The arm will stop automatically in response to the sensors when it reaches the horizontal or the vertical position.

· A person pressing a switch will start the raising and lowering of the barrier arm. For example, once the arm is in the vertical position, it will stay there until the operator presses a switch to bring it down again.

· The speed of the arm will not be so fast that it creates a danger of hitting the car and its occupants, or so slow that people will get annoyed waiting for it. LEGO gears may be used to ensure a suitable speed for the arm.
· Gearing systems will be covered to protect people from injury.

Assessment schedule: Digital Technologies 91078 Car Park Barrier Arm

	Evidence/Judgements for Achievement
	Evidence/Judgements for Achievement with Merit
	Evidence/Judgements for Achievement with Excellence

	The student has implemented basic interfacing procedures in a specified electronic environment.
The student has chosen appropriate component types and values for the interface, for example:

I found that the LDR had a resistance of 68kΩ when the light beam was blocked and 4kΩ when the light beam was not blocked. So I chose a resistor in between these two values to use in the voltage divider. I used a 30kΩ resistor.

[image: image3.png]30kQ resistor
VVoltage L

divider

The student has written basic functional interface software given simple program structures. See Appendix 1 & 2 for an example illustrating different versions of a code fragment.

The student has tested and debugged a functional model of the interface, for example:
I found that when the sensor was facing into the classroom, the barrier arm worked perfectly, but when I turned it around so it was facing the windows, it did not work any more. I fixed this by making a little shield for the light sensor so that sunlight could not land on it.

I also found that the light sensor worked OK one day but not the next. This was because the brightness of the light in the room changed. I fixed this by shining an LED onto the sensor and hiding the sensor from any other light. This made the barrier arm work with any lighting conditions (see my annotated photographs of this).

This description relates to only part of what is required, and is indicative only.
	The student has skilfully implemented basic interfacing procedures in a specified electronic environment.
The student has chosen appropriate component types and values for the interface, for example:

I found that the LDR had a resistance of 68kΩ when the light beam was blocked and 4kΩ when the light beam was not blocked. So I chose a resistor in between these two values to use in the voltage divider. I used a 30kΩ resistor.

[image: image4.png]30kQ resistor
VVoltage L

divider

The student has written annotated, functional, and readily understandable interface software given simple program structures. See Appendix 1 & 3 for an example illustrating different versions of a code fragment.

This description relates to only part of what is required, and is indicative only.
	The student has efficiently implemented basic interfacing procedures in a specified electronic environment.
The student has chosen appropriate component types and values for the interface, for example:
I found that the LDR had a resistance of 68kΩ when the light beam was blocked and 4kΩ when the light beam was not blocked. So I chose a resistor in between these two values to use in the voltage divider. I used a 30kΩ resistor.

[image: image5.jpg]

The student has used data sheets or calculations to assist in choosing appropriate component types and values for the interface, for example:
From data sheet, diode is rated at 3V and 20mA.

[image: image6.jpg]

The student has written well-structured, clearly annotated, readily understandable interface software given simple program structures. See Appendix 1 & 4 for an example illustrating different versions of a code fragment.

This description relates to only part of what is required, and is indicative only.

Final grades will be decided using professional judgement based on a holistic examination of the evidence provided against the criteria in the Achievement Standard.

Appendix 1
The photos below show the main components of a computer-controlled barrier arm.

The computer code included in Appendices 2, 3 and 4 show how the arm is made to go up when the switch in the photo below is pressed.
[image: image7.png]30kQ resistor
VVoltage L

divider

[image: image8.emf]

	

	

[image: image9.png]12V

3V
20mA

Appendix 2: Student evidence for Achieved

The code is all jammed onto consecutive lines, which does little to make the structure clear (even though it is essentially the same code as in the Excellence example.) Labels are not used, and comments are non-existent. Even the descriptor at the start does not really capture the essence of what the barrier arm does. The code, while correct, is not that straightforward to follow.
/* This program raises a barrier arm when a car is detected. */

int sensorValue = 0;

int Switch_value = 0;

void setup()

pinMode(13, OUTPUT);

pinMode (0, INPUT);

pinMode (8, INPUT);

}

void loop() {

while (Switch_value = = LOW)

Switch_value = analogRead(8);

digitalWrite(13, HIGH);

while (Sensor_value < 500)

Sensor_value = analogRead(0);

digitalWrite(13, LOW);

}

Appendix 3: Student evidence for Merit

This piece of code is well structured, but the annotation leaves a lot to the imagination, and the comprehensibility of the code is compromised by a failure to use labels that give an intuitive understanding of the functions of the input and output pins on the microcontroller.

/* This piece of code waits until a switch is pressed. It then turns on a motor to raise a barrier arm.

 A light sensor detects when the barrier arm reaches the ‘up’ position and the motor stops automatically.*/

int arm_up = 13;

//create expression ‘arm_up’ to refer to pin 13 where motor is connected

int sensor = 0;

// Create expression ‘sensor’ to refer to pin 0 where sensor is connected.

int Switch = 8;

//Create expression ‘Switch’ to digital pin 8 where switch is connected

int sensorValue = 0;

// variable to store the value coming from the voltage divider

int Switch_value = 0;

void setup() {

 pinMode(13, OUTPUT);

// declare the pin (13) as an output but no indication of what pin 13

//does
 pinMode (0, INPUT);

//Declare pin 0 as an analogue input.

 pinMode (8, INPUT);

//Declare the pin as an input, but no indication what it’s for
}

void loop() {

 while (Switch_value = = LOW)
//

 Switch_value = analogRead(8);
// read pin 8 but no indication what information this provides.

 digitalWrite(13, HIGH);

//Write pin 13 high, but no indication what this is doing.

 while (Sensor_value < 500)
//while light beam not blocked

 Sensor_value = analogRead(0); //just just keep reading the sensor pin

 digitalWrite(13, LOW);

//Write pin 13 LOW, but no indication what this controls.

}

This is an example of code that is not clearly annotated. Annotations are there, but they are not helpful in determining what tasks the code is addressing.

The comments highlighted in yellow are not part of what a student might write. They are comments explaining where the annotation is incomplete.

Appendix 4: Student evidence for Excellence
This piece of code is clearly written, well annotated, and well structured.

/* This piece of code waits until a switch is pressed. It then turns on a motor to raise a barrier arm.

A light sensor detects when the barrier arm reaches the ‘up’ position and the motor stops automatically.*/

int arm_up = 13;

//create expression ‘arm_up’ to refer to pin 13 where motor is connected

int sensor = 0;

// Create expression ‘sensor’ to refer to pin 0 where sensor is connected.

int Switch = 8;

//Create expression ‘Switch’ to digital pin 8 where switch is

//connected

int Sensor_value = 0;

// variable to store the value coming from the voltage divider

int Switch_value = 0;

void setup() {

 pinMode(arm_up, OUTPUT);

// declare the arm_up pin (13) as an output

 pinMode (sensor, INPUT);

//Declare the sensor pin as an analogue input.

 pinMode (Switch, INPUT);

//Declare the switch pin as a digital input.

}

void loop() {

 while (Switch_value == LOW)
//while light beam not blocked

 Switch_value = analogRead(Switch); // keep reading the switch pin:

 digitalWrite(arm_up, HIGH);
//Once beam is blocked, start raising arm

 while (Sensor_value < 500)
//while light beam not blocked

 Sensor_value = analogRead(sensor); //just just keep reading the sensor pin

 digitalWrite(arm_up, LOW);
//once beam is blocked, stop arm from rising

}

Yellow: Examples of given program structures; others include “if” and “if-else” statements

Green: Examples of creating labels that make the code more readily understood

� EMBED Word.Picture.8 ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

This motor is connected to digital output pin 13 on the microcontroller.

The light sensor in this LEGO block can detect when the black line is in front of it. The sensor is connected to analogue input pin 0 on the microcontroller.

This switch is connected to digital input pin 8 on the microcontroller.

This draft resource is copyright © Crown 2009
Page 16 of 12
This resource is copyright © Crown 2015

Page 6 of 12

_1221637059.doc
[image: image1.png]National Certificate of Educational Achievement
TAUMATA MATAURANGA A-MOTU KUA TAEA

_1347346866

