Internal assessment resource Digital Technologies 3.46 for Achievement Standard 91637

PAGE FOR TEACHER USE

[image: image1.emf]

[image: image2.emf]National Certificate of Educational Achievement
TAUMATA MATAURANGA A-MOTU KUA TAEA

	

Internal Assessment Resource

Digital Technologies Level 3
	This resource supports assessment against:

Achievement Standard 91637

Develop a complex computer program for a specified task

	Resource title: Develop a simple calculator GUI

	6 credits

	This resource:

· Clarifies the requirements of the Standard

· Supports good assessment practice

· Should be subjected to the school’s usual assessment quality assurance process

· Should be modified to make the context relevant to students in their school environment and ensure that submitted evidence is authentic

	Date version published by

Ministry of Education
	January 2013
To support internal assessment from 2013

	Quality assurance status
	These materials have been quality assured by NZQA. NZQA Approved number A-A-01-2013-91637-01-6204

	Authenticity of evidence
	Teachers must manage authenticity for any assessment from a public source, because students may have access to the assessment schedule or student exemplar material.

Using this assessment resource without modification may mean that students’ work is not authentic. The teacher may need to change figures, measurements or data sources or set a different context or topic to be investigated or a different text to read or perform.

Internal Assessment Resource

Achievement Standard Digital Technologies 91637: Develop a complex computer program for a specified task
Resource reference: Digital Technologies 3.46
Resource title: Develop a simple calculator GUI
Credits: 6
Teacher guidelines

The following guidelines are designed to ensure that teachers can carry out valid and consistent assessment using this internal assessment resource.

Teachers need to be very familiar with the outcome being assessed by Achievement Standard Digital Technologies 91637. The achievement criteria and the explanatory notes contain information, definitions, and requirements that are crucial when interpreting the Standard and assessing students against it.

Context/setting

This activity requires the student to develop a program for a calculator that will perform certain specified functions. The calculator needs to consist of button components and to respond to corresponding entries from the keyboard.

You could give the students the specifications for the calculator program that they then design and implement. See the student instructions section for an example. Alternatively, the students may have fully established the specifications for their calculator program in technological practice and are ready to design and implement it.

There are many different specifications that you may require for building a desktop calculator. You can adapt this activity by including, for example, any of the following requirements:

· the calculator displays the whole expression since the last use of equals or clear

· the calculator includes M+, M-, MR, MC

· the calculator includes the ability to choose between int division and floating point division

· the calculator includes the ability to suppress scientific notation

· the calculator handles user input of the type 3 + 4 * 5 =

· the calculator handles user input of the type 3 + 7 = + 5

In all cases ensure that the specifications require that:
· the GUI consists of appropriate components for the intended behaviour; this behaviour is described in detail;
· the program consists of more than one class; it includes an indexed array or list;
· and there is more than one event source.
Several of the features required in the specified task could safely be omitted, for example, the ability to backspace. If you wish to simplify the given task further, remove the need to handle keyboard input and only require that the calculator program respond to mouse clicks on buttons. With this modification the task will still meet the requirements of the Standard, that is, to include more than one event source.
Do not overload the task with too many requirements and unnecessarily require students to demonstrate skills more than once.

You will specify the language in which the students will construct the program. This will be a text-based object-oriented language. This task is exemplified in Python using tkinter. However, it could be programed in Java or another language of your choice.

Students may wish to use images for the buttons. However, do not give undue weight to the appearance of the calculator; functionality is the primary concern.

It is possible to demand more than the simple type of equation of: operand operator operand = result. Examples include equations such as: 3 + 4 = + 6 = ----> 13.
Your choice of language may dictate the attainability of some specifications.

In an interpreted language like Python, with its very powerful and easy-to-use eval function, it is comparatively simple to perform such equations as:

 3 + 4 - 2

 3 + 4 + 5 - 6

For something like 4 + 4 * 5 + the user’s intended precedence is not clear: should the answer be 24 or 40? Two calculators may give different answers. The teacher may choose to specify the desired precedence or the student should document their decision and the reasons for it.
Without eval, replicating the logic of a real calculator is more difficult. With eval, other problems may emerge, for example, leading zeroes.

Important design decisions will be whether to store the previous and current inputs as strings or numbers, to use the eval function, or to code the mathematical equations for each operator.

Before being given this task, ensure that your students have had ample opportunity to practice using the programming language that they will use for this purpose. They need to have practised developing and implementing a program, including following a comprehensive testing process.

They need to know how to:

· define and instantiate classes

· create a graphical user interface

· use a variety of components (for example, buttons, labels, text fields) and events (such as button clicks and key strokes)

· follow a disciplined design, implementation, and comprehensive testing process

· document incremental cycles of development

· document code concisely and document the program with comments that explain and justify decisions.

Conditions

This is an individual assessment activity.

It is recommended that students be given 10 to 12 weeks of in-class time to complete teaching learning and assessment.

Resource requirements

Students will need a programming development environment for a programming language with an appropriate text editor, compiler or interpreter, or integrated development environment (IDE).

A different task might require additional specialised resources such as sound-recording equipment, image-manipulation software, robots, or other electronics.

Additional information

This Standard requires you to make judgements about the ways in which the student has constructed their program, as well as about the quality of the finished program. For example, you are required to judge (for Merit) whether the student has followed a disciplined design, implementation, and comprehensive testing process in the development of their program. This relates to the student’s manner of working.

Specifically, do they develop and test their program in a thoughtful and considered manner showing analysis and reflection rather than an ad hoc, trial and error approach? Some evidence will come from classroom observation and from conferencing with the student. You must be able to justify such judgements with evidence, for example, notes that you have made.

Students are also required to document cycles of incremental development. Accuracy can be measured within the program (for the example, the student has chosen the correct data types/scope for their variables), and in the way they have documented their program.

The criterion for Excellence relates to the efficiency of the complex computer program. All of the evidence for efficiency can be found within the program. Graphical user interface, event handling design, and the overall program will be well-structured, flexible and robust. For example, the student has considered the ease with which further components and behaviours may be added to the calculator, modules will be reused to reduce redundancy, variables and constants will be used effectively, and there will be comprehensive planning of program and testing procedures.

Internal Assessment Resource

Achievement Standard Digital Technologies 91637: Develop a complex computer program for a specified task
Resource reference: Digital Technologies 3.46

Resource title: Develop a simple calculator GUI
Credits: 6
	Achievement
	Achievement with Merit
	Achievement with
Excellence

	Develop a complex computer program for a specified task.
	Skilfully develop a complex computer program for a specified task.
	Efficiently develop a complex computer program for a specified task.

Student instructions

Introduction

This assessment activity requires you to develop a computer program for a calculator that will perform certain specified functions.

This is an individual assessment activity.

You will have approximately five weeks of in-class and out-of-class time to complete the task.

Teacher note: Adapt the time and format to suit your students.

You will be assessed on how well-structured and robust your program is.
Task

Develop a calculator program to meet the specifications below.

Specifications

· the calculator can handle a simple expression of the type:
operand operator operand = result

· operators include at least +, -, *, /

· the calculator displays the current input as it is entered

· the calculator displays the result if equals is entered

· when an operator is entered, the number just previously entered stays on-screen

· the operator is indicated by the button for that operator appearing different in some way, for example, changing to a different colour

· the calculator includes a decimal point button and can operate with floating point numbers

· users can clear

· users can backspace one digit at a time on their current input

· the calculator consists of a display area and all necessary button components, and allows the user to type in their calculation and have the calculator respond in essentially the same way as it would to button clicks
· the calculator does not allow anything to be typed into the display area that is not also represented by a button

· the calculator is well tested and tries to handle user errors gracefully

· the program consists of a GUI class and a support class to implement the logic of the calculator.

You do not have to correct floating-point precision errors.

You may import classes from the libraries. You may not use any code that is auto-generated by an IDE.
Process

Develop your calculator GUI program to meet the specifications.

Document the cycles of incremental development as you work, for example, produce screenshots of your developing program at the end of each classroom session.

Check your finished program

Comprehensively test and debug the program in an organised and time-effective way so it works correctly on all inputs – expected, boundary, and invalid.

Ensure that in your finished program:

· there is at least one indexed data structure and it has: a modular structure; an input and output; procedural structures that combine sequential, conditional, and iterative structures; a graphical user interface and event handling; and that includes classes and objects (inheritance is not required)
· interaction between modules is minimised, modules are reused rather than duplicated, and the procedural structure of each module is efficient
· classes and objects are sensibly encapsulated

· you annotate your code and use explanatory variable/module names so that the purpose of each part of the program is clear. Document the program with comments on the function and behaviour of the classes and modules.

Justify the decisions you made as you developed your GUI program.

Final submission

Hand in for assessment:

· a print-out of your final source code

· an electronic version of your program

· screenshots of example output with annotations

· short documentation describing how you implemented your testing procedures and the outcomes of your testing, for example, a testing log.

Assessment schedule: Digital Technologies 91637 Develop a simple calculator GUI

	Evidence/Judgements for Achievement
	Evidence/Judgements for Achievement with Merit
	Evidence/Judgements for Achievement with Excellence

	The student has developed a complex computer program for a specified task.

The student has:
Completed a working program to meet specifications.
· designed and implemented a program that includes variables, an indexed data structure, and a modular structure including details of the procedural structures of the modules

The student has completed a working program to meet specifications using a documented design process, but may:

· not have anticipated user errors, for example, multiple decimal points within one number

· have included redundant pieces of code

· have poorly named variables, for example, x instead of current_input
· not be able to articulate what specific pieces of code are doing, having developed them by trial and error with little understanding

· have failed to properly contain all aspects of the logic or state of the calculator within the support class.

· included a working graphical user interface with different sources of events generating components and event handling, and used classes and objects to encapsulate data and methods

The student has included a functioning user interface, but it may:
· respond to a button click and the corresponding keyboard event with duplicated and repeated code instead of the same code

· have individually named buttons and then stored them in an indexed data structure as well, only because the criteria requires it

· distinguish between events with awkward/ inefficient if statements instead of, for example, if/elif/else

· respond to number inputs individually instead of as a group of possible inputs requiring the same response

· respond to operator inputs individually instead of as a group of possible inputs requiring the same response.

· set out the program code clearly and document the program with comments

For example, a comment for code that appends a decimal point to the current input might be:

“Handles the decimal point.”

· tested and debugged the program to ensure it works on a sample of expected input cases

The program works on clean input such as:

3.2 + 4.5 =
This description relates to only part of what is required, and is indicative only.

	The student has skilfully developed a complex computer program for a specified task.

The student has:

Completed a working program to meet specifications.
· followed a disciplined design, implementation, and comprehensive testing process with documented cycles of incremental development

The student has, for example:

· anticipated and responded to user errors, for example, multiple decimal points within one number, but perhaps only in such a way that the user must still repeat the whole calculation

· thoughtfully edited their code, removing redundancy

· understood the purpose of all the code they have written and are able to articulate that purpose.

· used well-chosen scope and encapsulation for data, control structures, elements of the programing language, and event handling mechanisms

The student has, for example:

· mostly maintained a clear distinction between the GUI class and the logic/support class

· created and added buttons to a list(s) using a loop(s) and a list(s) of strings

· bound the handler(s) to keyboard events using the same technique

· placed buttons using loop(s)

· responded to a button click and the corresponding keyboard event with the same code

· responded to logical groups of possible user inputs (for example, all numbers) with the same code

· ensured that a value that is only ever required in one module should not belong to the whole class.

· documented the program with variable and module names and comments that accurately describe code function and behaviour

The student has named variables descriptively, for example, current_input, current_operator etc.

A comment that accurately describes code that appends a decimal point to the current input might be:

“Appends a decimal point to the current input.”

This description relates to only part of what is required, and is indicative only.
	The student has efficiently developed a complex computer program for a specified task.

The student has:

Completed a working program to meet specifications.

· followed a disciplined design, implementation, and comprehensive testing process with documented cycles of incremental development

· used well-chosen scope and encapsulation for data, control structures, elements of the programing language, and event handling mechanisms

· ensured that the graphical user interface, event handling design, and overall program design are well-structured, flexible, and robust

· comprehensively tested and debugged the program in an organised and time-effective way to ensure the program is correct on expected, boundary, and invalid input cases
Well-structured, flexible, and robust event handling and program design means the student has, for example:
· maintained a clear distinction between the GUI class and the logic/support class so that the logic class is easily reusable for a differently styled GUI or a different context, for example, command line

· designed the GUI to be easily adapted, for example, if buttons for M+, M-, MR, MC were suddenly required to be added the extra code needed would be minimal

· designed the handler to be easily adapted, for example, if functionality for M+, M-, MR, MC were suddenly required the extra code needed would be minimal

· anticipated user errors (for example, multiple decimal points or leading zeroes) and responded gracefully, for instance, excluded ‘impossible’ entries and given the user the chance to recover without losing ‘work’ or simply being told ‘ERROR’ when equals is entered.

· set out the program code concisely and documented the program with comments that explain and justify decisions
For example, a comment that explains and justifies code that appends a decimal point to the current input might be:

“Checks if current input already contains a decimal point and appends one only if it does not. If the previous decimal point was a mistake and this is the intended one, user still has the ability to backspace.”

This description relates to only part of what is required, and is indicative only.

Final grades will be decided using professional judgement based on a holistic examination of the evidence provided against the criteria in the Achievement Standard.

NZQA Approved

� EMBED Word.Picture.8 ���

This draft resource is copyright © Crown 2009
Page 16 of 8
PAGE
This resource is copyright © Crown 2013

Page 1 of 8

_1285311013.doc
[image: image1.png]National Certificate of Educational Achievement
TAUMATA MATAURANGA A-MOTU KUA TAEA

